Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Funct Biomater ; 14(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2306055

RESUMEN

Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity and excessive gas permeability of PDMS hinder its applications in many fields. This study developed a silicon-based polydimethylsiloxane-polyethylene-glycol (PDMS-PEG) copolymer microfluidic chip, the PDMS-PEG copolymer silicon chip (PPc-Si chip), for biomolecular diagnosis. By adjusting the modifier formula for PDMS, the hydrophilic switch occurred within 15 s after contact with water, resulting in only a 0.8% reduction in transmittance after modification. In addition, we evaluated the transmittance at a wide range of wavelengths from 200 nm to 1000 nm to provide a reference for its optical property study and application in optical-related devices. The improved hydrophilicity was achieved by introducing a large number of hydroxyl groups, which also resulted in excellent bonding strength of PPc-Si chips. The bonding condition was easy to achieve and time-saving. Real-time PCR tests were successfully conducted with higher efficiency and lower non-specific absorption. This chip has a high potential for a wide range of applications in point-of-care tests (POCT) and rapid disease diagnosis.

2.
Molecules ; 28(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2287580

RESUMEN

Real-time polymerase chain reaction (real-time PCR) tests were successfully conducted in an aluminum-based microfluidic chip developed in this work. The reaction chamber was coated with silicone-modified epoxy resin to isolate the reaction system from metal surfaces, preventing the metal ions from interfering with the reaction process. The patterned aluminum substrate was bonded with a hydroxylated glass mask using silicone sealant at room temperature. The effect of thermal expansion was counteracted by the elasticity of cured silicone. With the heating process closely monitored, real-time PCR testing in reaction chambers proceeded smoothly, and the results show similar quantification cycle values to those of traditional test sets. Scanning electron microscope (SEM) and atomic force microscopy (AFM) images showed that the surface of the reaction chamber was smoothly coated, illustrating the promising coating and isolating properties. Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometer (ICP-OES) showed that no metal ions escaped from the metal to the chip surface. Fourier-transform infrared spectroscopy (FTIR) was used to check the surface chemical state before and after tests, and the unchanged infrared absorption peaks indicated the unreacted, antifouling surface. The limit of detection (LOD) of at least two copies can be obtained in this chip.

3.
MedComm ; 4(1), 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2232654

RESUMEN

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) highlights the need for innovative anti‐SARS‐CoV‐2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR‐Cas13‐based strategy against SARS‐CoV‐2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR‐associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID‐19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS‐CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties;therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS‐CoV‐2 variants carrying multiple mutations. Cas13d‐crRNAs inhibit both ancestral and mutated SARS‐CoV‐2 replication. Cas13d‐crRNAs inhibit both ancestral and mutated SARS‐CoV‐2 replication including Delta. Cas13d‐crRNAs could inhibit Omicron and other SARS family strains and are a potential pan‐SARS inhibition strategy.

4.
MedComm (2020) ; 4(1): e208, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2232655

RESUMEN

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for innovative anti-SARS-CoV-2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR-Cas13-based strategy against SARS-CoV-2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR-associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID-19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS-CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties; therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS-CoV-2 variants carrying multiple mutations.

5.
6.
Bioengineering (Basel) ; 9(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2071198

RESUMEN

With the evolution of the pandemic caused by the Coronavirus disease of 2019 (COVID-19), reverse transcriptase-polymerase chain reactions (RT-PCR) have invariably been a golden standard in clinical diagnosis. Nevertheless, the traditional polymerase chain reaction (PCR) is not feasible for field application due to its drawbacks, such as time-consuming and laboratory-based dependence. To overcome these challenges, a microchip-based ultrafast PCR system called SWM-02 was proposed to make PCR assay in a rapid, portable, and low-cost strategy. This novel platform can perform 6-sample detection per run using multiple fluorescent channels and complete an ultrafast COVID-19 RT-PCR test within 40 min. Here, we evaluated the performance of the microdevice using the gradient-diluted COVID-19 reference samples and commercial PCR kit and determined its limit-of-detection (LoD) as 500 copies/mL, whose variation coefficients for the nucleocapsid (N) gene and open reading frame 1 ab region (ORF1ab) gene are 1.427% and 0.7872%, respectively. The system also revealed an excellent linear correlation between cycle threshold (Ct) values and dilution factors (R2 > 0.99). Additionally, we successfully detected the target RNAs and internal gene in the clinical samples by fast PCR, which shows strong consistency with conventional PCR protocol. Hence, with compact dimension, user-friendly design, and fast processing time, SWM-02 has the capability of offering timely and sensitive on-site molecular diagnosis for prevention and control of pathogen transmission.

7.
Econ Lett ; 215: 110466, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1768044

RESUMEN

This paper investigates the Chinese stock market reactions to the announcements of Covid-19 vaccine approvals. These announcements generally impacted stock prices, but the impacts appeared to be heterogeneous across sectors. Particularly, firms in the manufacturing, wholesale, retail, and information technology sectors were persistently benefited. We also find that firms with poorer performance, smaller sizes, and greater ages reacted more positively compared to others.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3705-3708, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1566210

RESUMEN

The coronavirus disease 2019 (COVID-19) has become a global pandemic. The segmentation of COVID-19 pneumonia lesions from CT images is important in quantitative evaluation and assessment of the infection. Though many deep learning segmentation methods have been proposed, the performance is limited when pixel-level annotations are hard to obtain. In order to alleviate the performance limitation brought by the lack of pixel-level annotation in COVID-19 pneumonia lesion segmentation task, we construct a denoising self-supervised framework, which is composed of a pretext denoising task and a downstream segmentation task. Through the pretext denoising task, the semantic features from massive unlabelled data are learned in an unsupervised manner, so as to provide additional supervisory signal for the downstream segmentation task. Experimental results showed that our method can effectively leverage unlabelled images to improve the segmentation performance, and outperformed reconstruction-based self-supervised learning when only a small set of training images are annotated.Clinical relevance-The proposed method can effectively leverage unlabelled images to improve the performance for COVID-19 pneumonia lesion segmentation when only a small set of CT images are annotated.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
9.
Lab Chip ; 21(9): 1634-1660, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1127180

RESUMEN

COVID-19 is an acute respiratory disease caused by SARS-CoV-2, which has high transmissibility. People infected with SARS-CoV-2 can develop symptoms including cough, fever, pneumonia and other complications, which in severe cases could lead to death. In addition, a proportion of people infected with SARS-CoV-2 may be asymptomatic. At present, the primary diagnostic method for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR), which tests patient samples including nasopharyngeal swabs, sputum and other lower respiratory tract secretions. Other detection methods, e.g., isothermal nucleic acid amplification, CRISPR, immunochromatography, enzyme-linked immunosorbent assay (ELISA) and electrochemical sensors are also in use. As the current testing methods are mostly performed at central hospitals and third-party testing centres, the testing systems used mostly employ large, high-throughput, automated equipment. Given the current situation of the epidemic, point-of-care testing (POCT) is advantageous in terms of its ease of use, greater approachability on the user's end, more timely detection, and comparable accuracy and sensitivity, which could reduce the testing load on central hospitals. POCT is thus conducive to daily epidemic control and achieving early detection and treatment. This paper summarises the latest research advances in POCT-based SARS-CoV-2 detection methods, compares three categories of commercially available products, i.e., nucleic acid tests, immunoassays and novel sensors, and proposes the expectations for the development of POCT-based SARS-CoV-2 detection including greater accessibility, higher sensitivity and lower costs.


Asunto(s)
COVID-19 , Humanos , Técnicas de Amplificación de Ácido Nucleico , Pruebas en el Punto de Atención , SARS-CoV-2 , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA